## Course 8

## An Introduction to the Kalman Filter





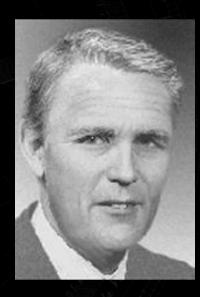
## Kalman Filters in 2 hours?

- Hah!
- No magic.
- Pretty simple to apply.
- Tolerant of abuse.
- Notes are a standalone reference.
- These slides are online at http://www.cs.unc.edu/~tracker/ref/s2001/kalman/



## Rudolf Emil Kalman

Born 1930 in Hungary
BS and MS from MIT
PhD 1957 from Columbia
Filter developed in 1960-61
Now retired





## What is a Kalman Filter?



- Just some applied math.
- A linear system: f(a+b) = f(a) + f(b).
- Noisy data in  $\rightarrow$  hopefully less noisy out.
- But delay is the price for filtering...
- Pure KF does not even adapt to the data.



## What is it used for?

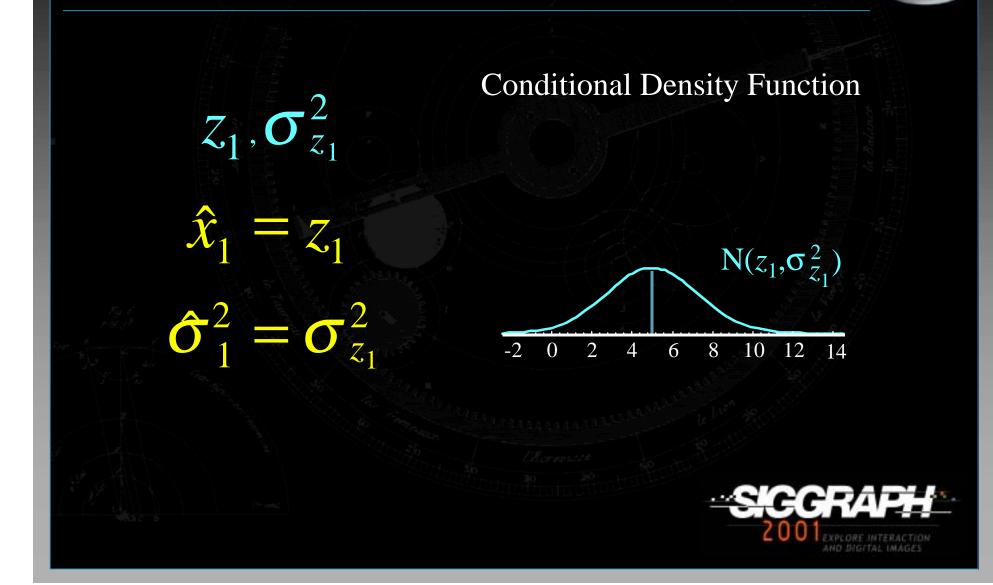
- Tracking missiles
- Tracking heads/hands/drumsticks
- Extracting lip motion from video
- Fitting Bezier patches to point data
- Lots of computer vision applications
- Economics
- Navigation



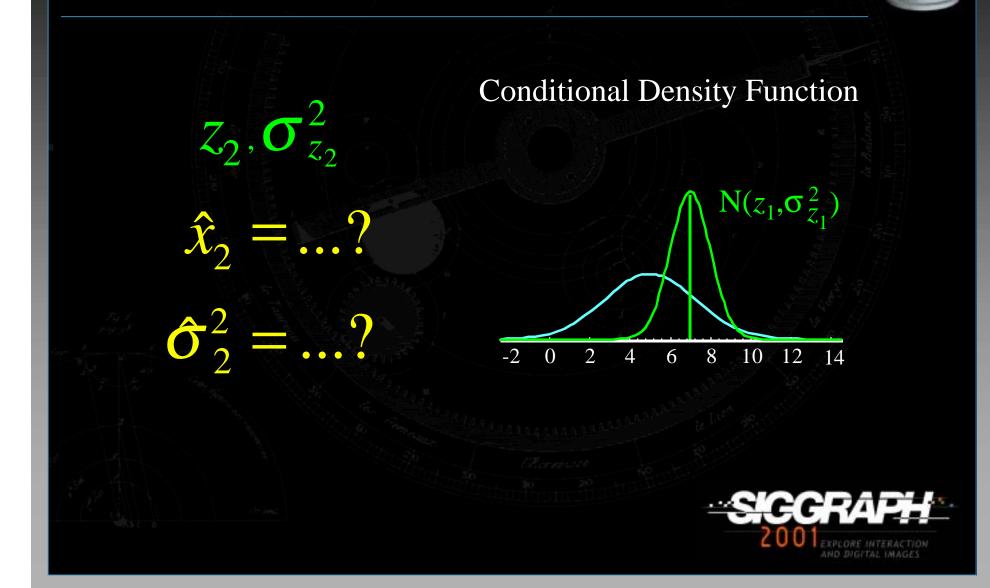
## A really simple example

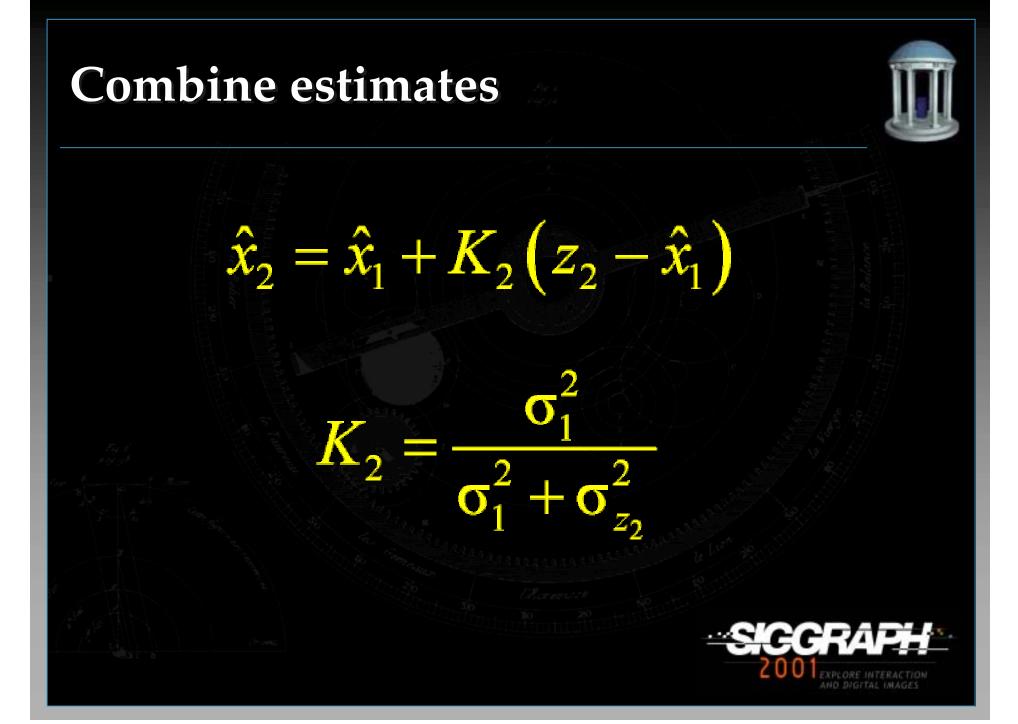


## Gary makes a measurement



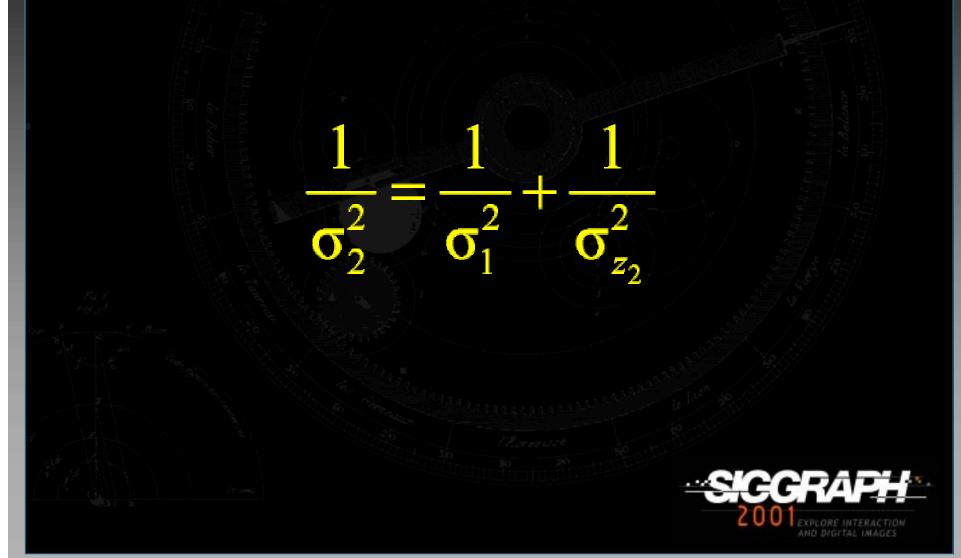
## Greg makes a measurement





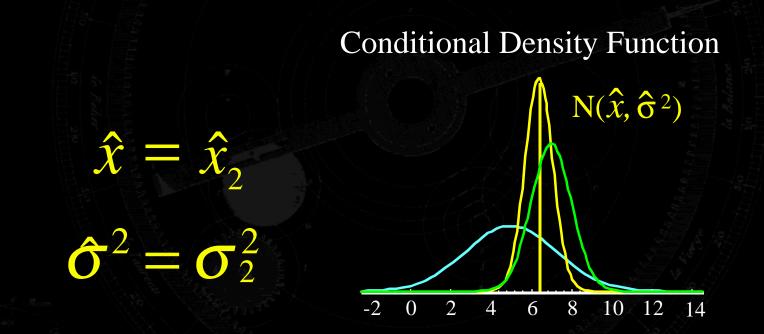
## **Combine variances**





## **Combined Estimates**

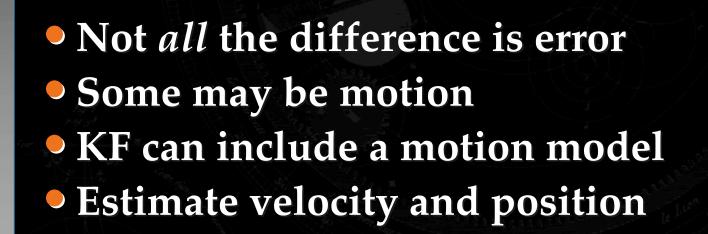




#### **Online weighted average!**



## **But suppose we're moving**



-2

 $\mathbf{0}$ 



## **Process Model**



- Describes how the state changes over time
- The *state* for the first example was scalar
- The *process model* was "nothing changes"
- A better model might be
- State is a 2-vector [ position, velocity ]
- $position_{n+1} = position_n + velocity_n * time$
- velocity<sub>n+1</sub> = velocity<sub>n</sub>



## Measurement Model



## "What you see from where you are" not "Where you are from what you see"



## **Predict** → **Correct**

#### KF operates by

• Predicting the new state and its uncertainty

Correcting with the new measurement

## predict correct



## **Example: 2D Position-Only**

#### (Greg Welch)

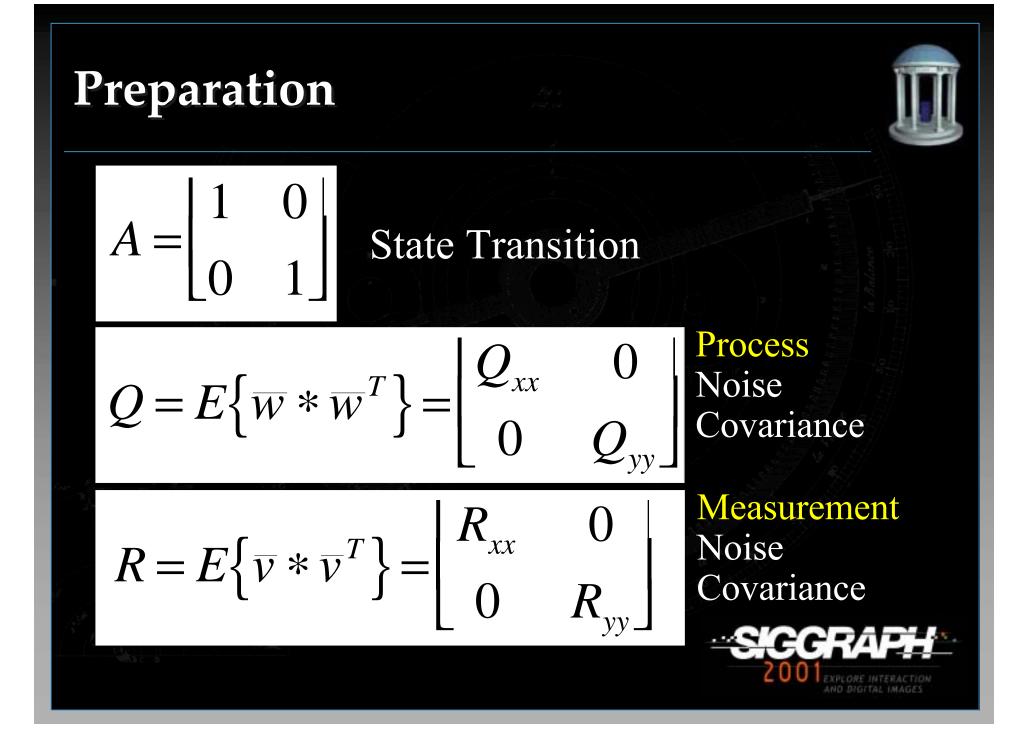




## **Process Model** $\begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_{k-1} \\ 0 & 1 & y_{k-1} \end{bmatrix} + \begin{bmatrix} \sim x_{k-1} \\ \sim y_{k-1} \end{bmatrix}$ state transition $\overline{\mathbf{X}}_{qte_1}$ state W ise $\overline{x}_{k} = A\overline{x}_{k-1} + \overline{w}_{k-1}$



**Measurement Model**  $\begin{bmatrix} H_{x} & 0 & x_{k} \\ 0 & H_{v} & y_{k} \end{bmatrix} + \begin{bmatrix} \sim u_{k} \\ \sim v_{k} \end{bmatrix}$  $\left| \mathcal{U}_{k} \right| =$ measurement mut ix n**o**jse  $mea \overline{\mathfrak{R}} rement$ staxe,  $\overline{Z}_k = H \overline{X}_k + \overline{V}_k$ 

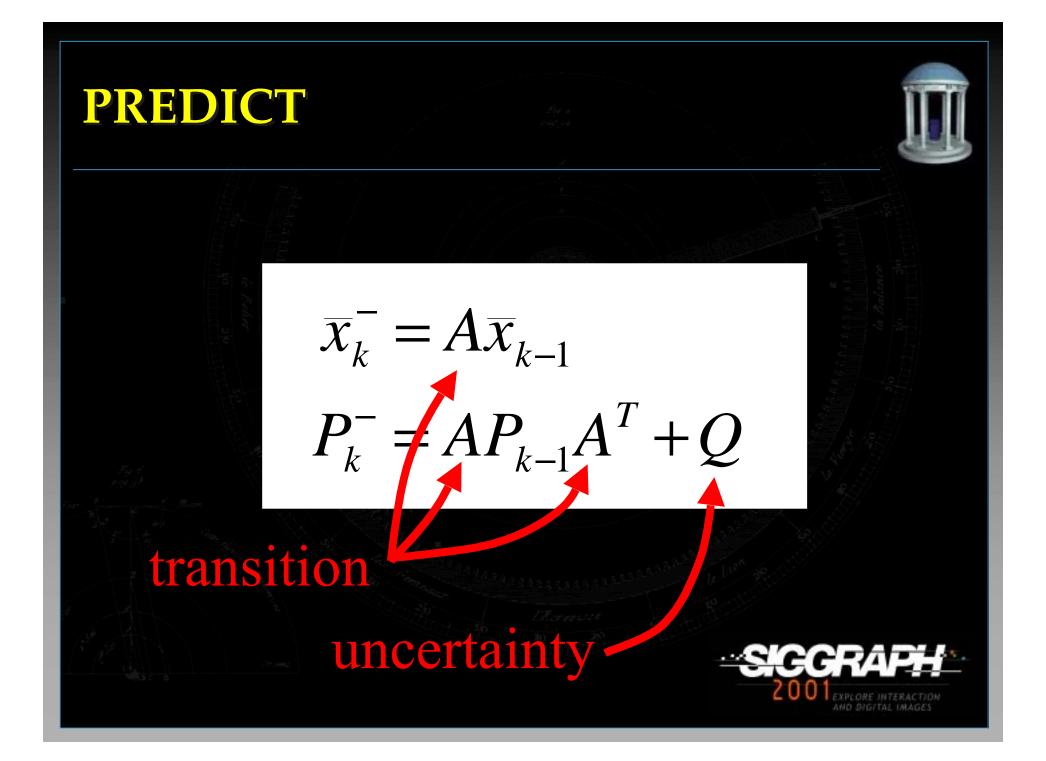


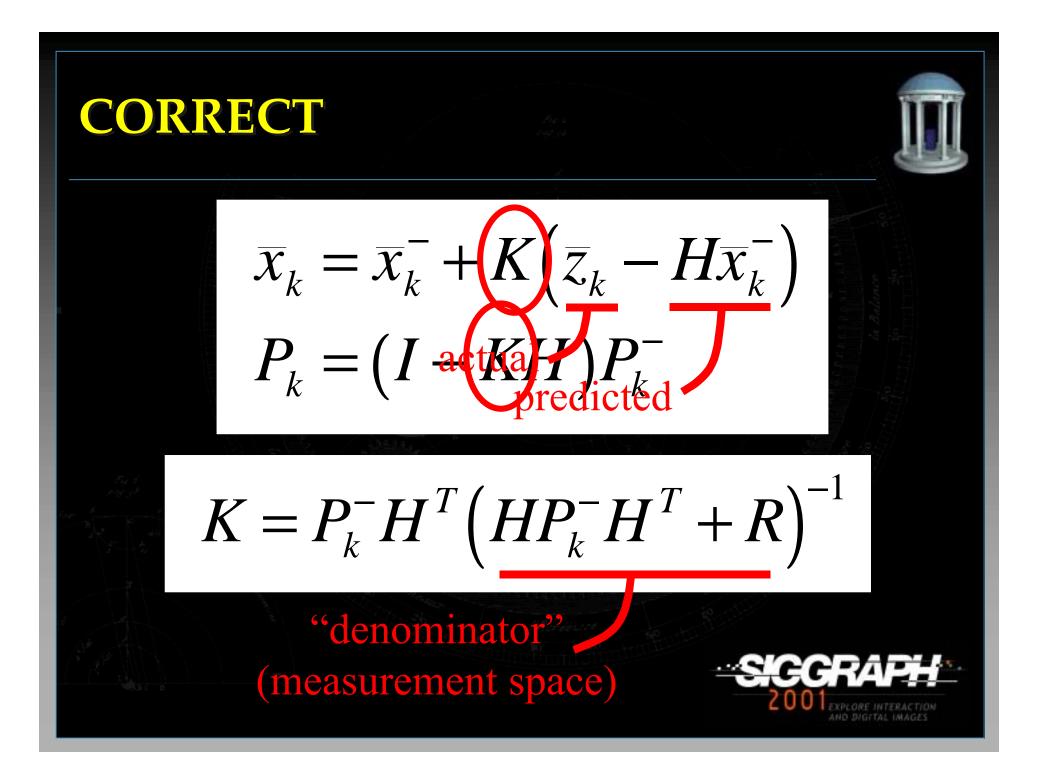
## Initialization

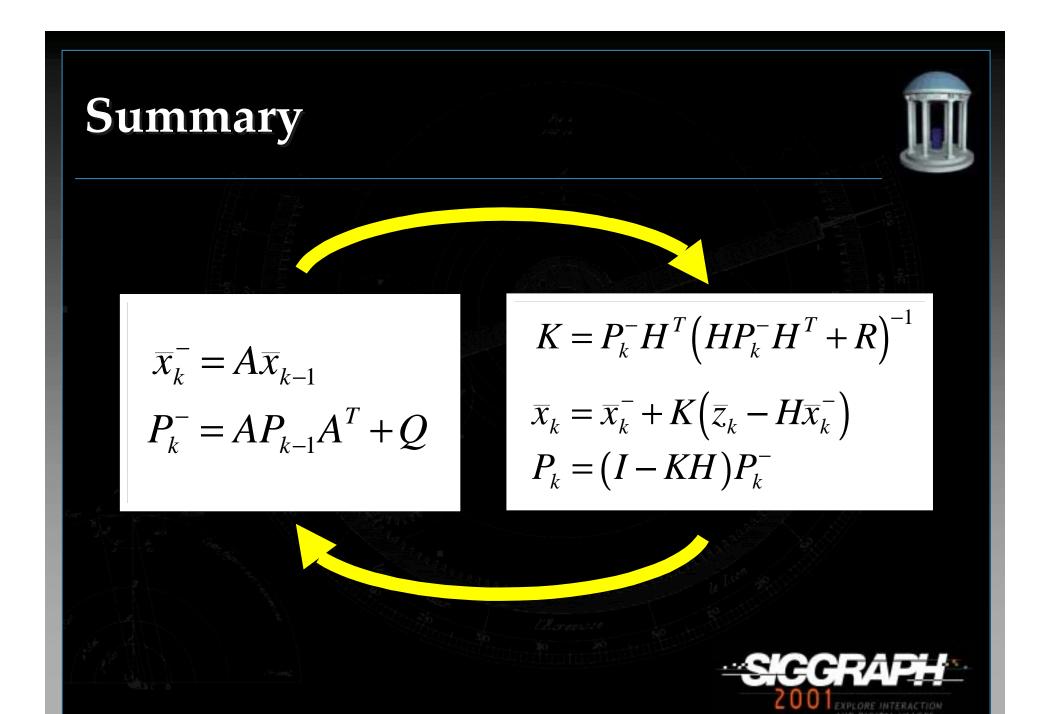
- दीहर व इन्द्रहर, हर्ज -

 $\overline{x}_0 = H\overline{z}_0$  $|\varepsilon|$  $P_0$  ${\cal E}$ 

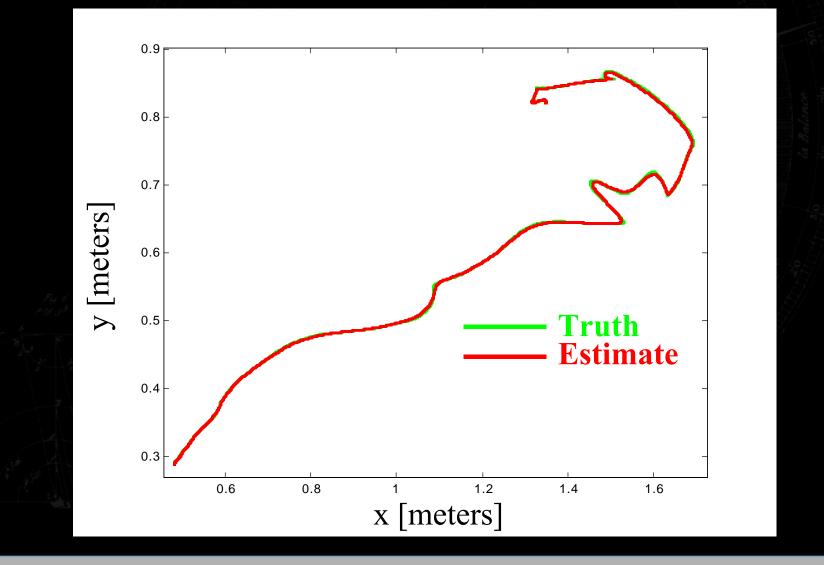


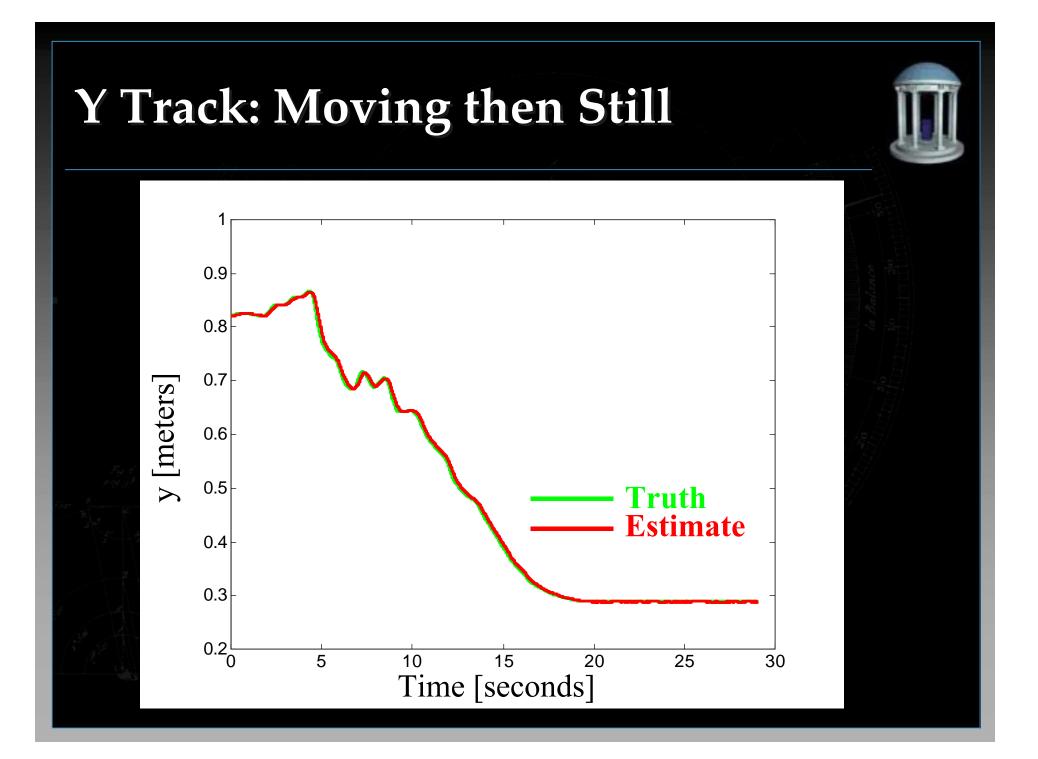




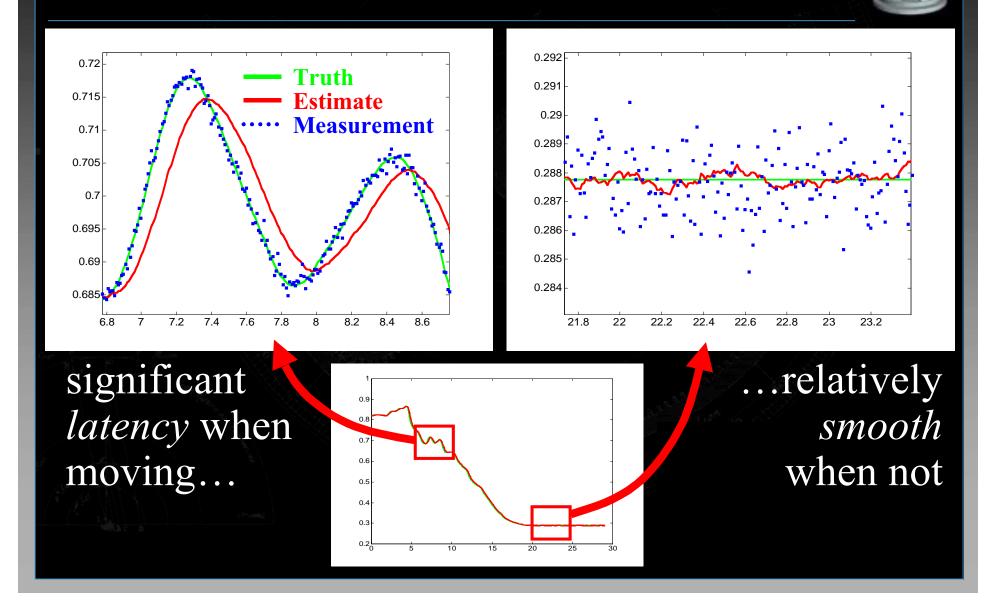


## **Results: XY Track**





## **Motion-Dependent Performance**

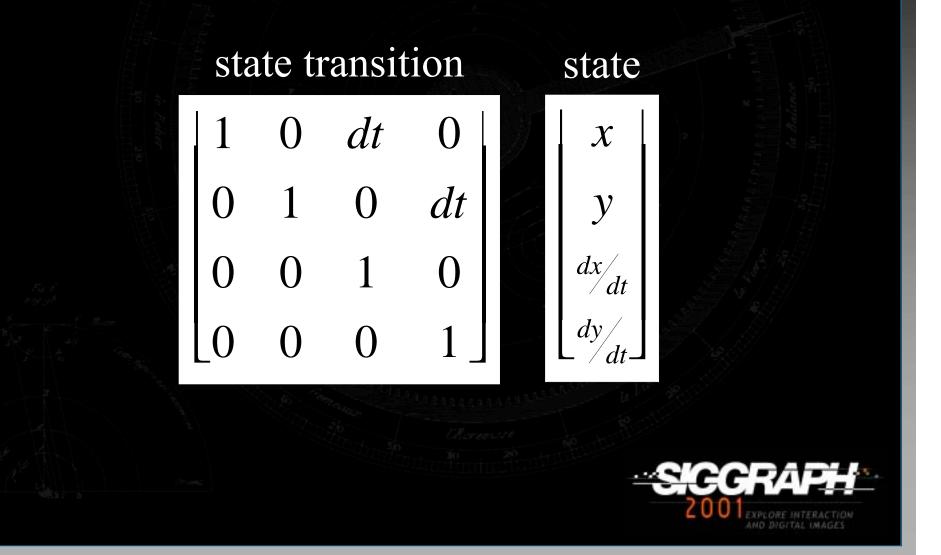


## **Example: 2D Position-Velocity**

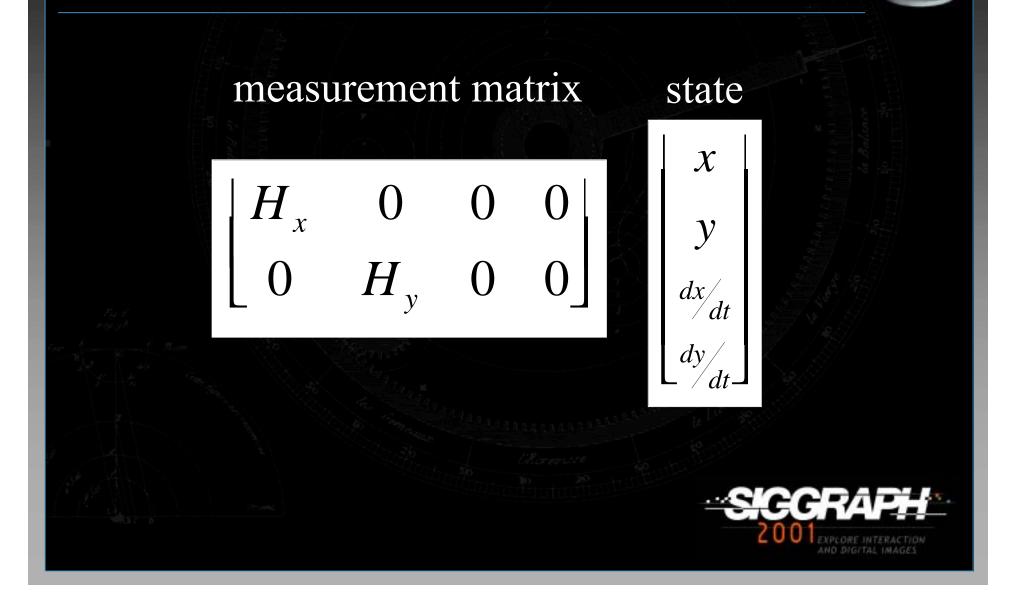
#### (PV Model)



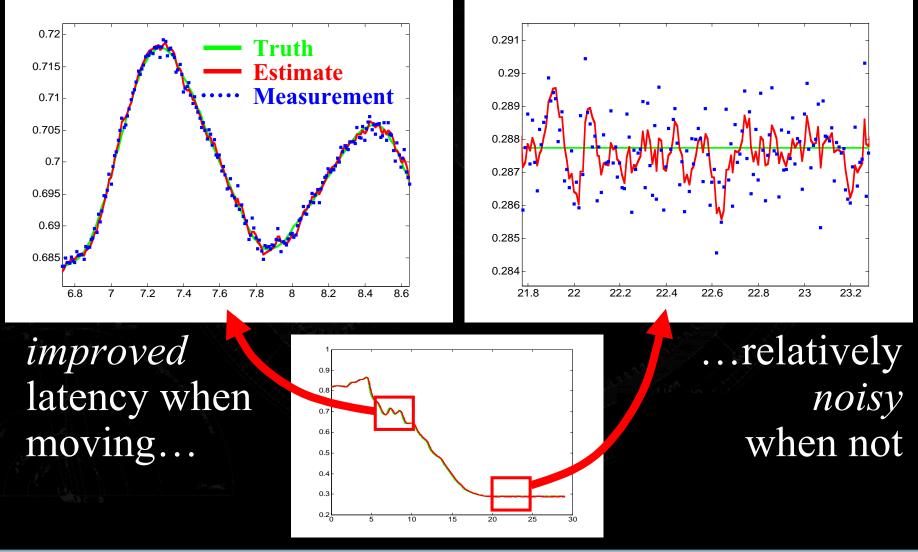
## **Process Model (PV)**







## **Different** Performance



## **Example: 6D HiBall Tracker**

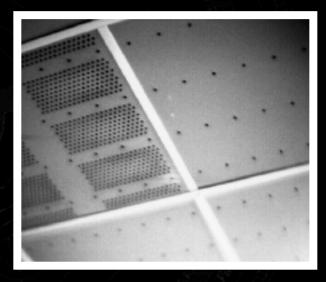
## (x, y, z, roll, pitch, yaw)





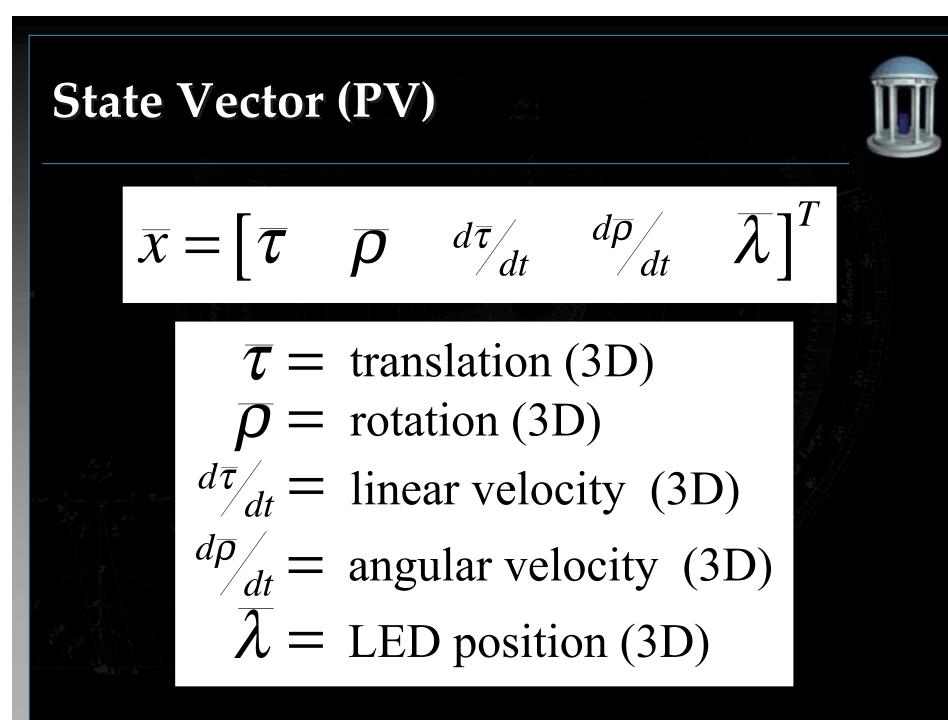
# HiBall with six optical sensors

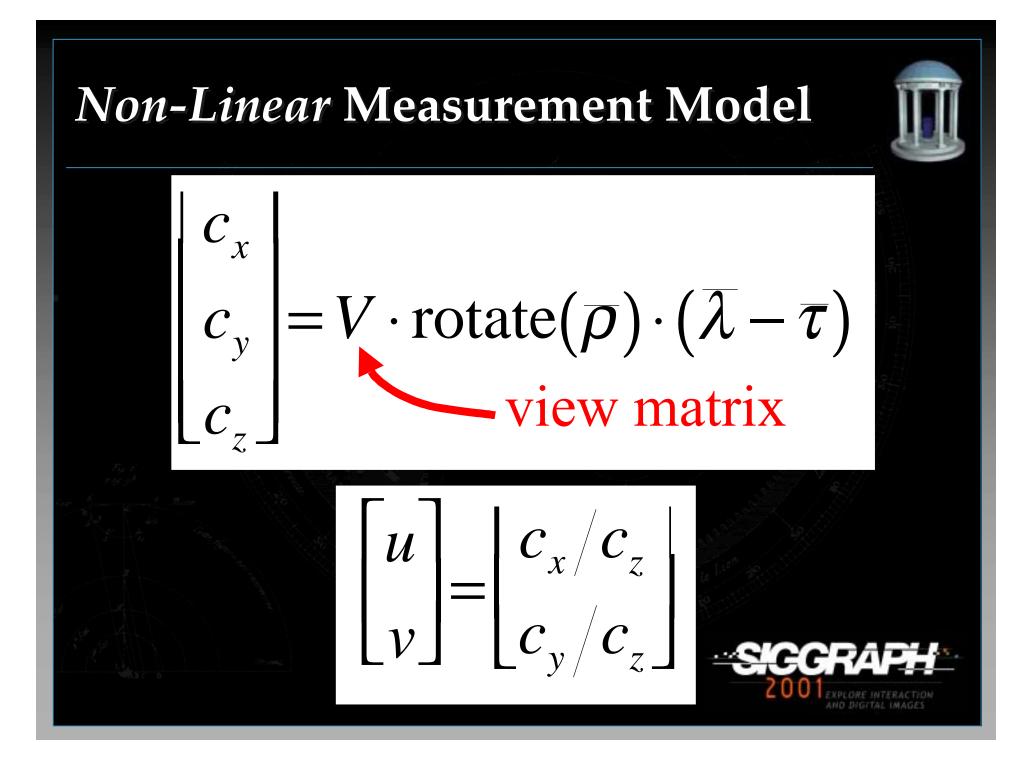




Ceiling panel with LEDs







## SCAAT vs. MCAAT



- Single or Multiple Constraint(s) at a Time
- Dimension of the measurement
  - Nothing about KF mathematics restricts it
  - Can process in "batch" or sequential mode
- SCAAT
  - Estimate 15 parameters with 2D measurements
  - Temporal improvements
  - Autocalibration of LED positions



## **HiBall Initialization**



- Initialize pose using a brute-force (relatively slow) MCAAT approach
- Initial velocities = 0
- Initial process covariance P<sub>0</sub> = ~cm/degrees
   Transition to SCAAT Kalman filter



## **Nonlinear Systems**

#### (Gary Bishop)



## Kalman Filter assumes linearity

- Only matrix operations allowed
- Measurement is a linear function of state
- Next state is linear function of previous state
- Can't estimate gain
- Can't handle rotations (angles in state)
- Can't handle projection



## **Extended Kalman Filter**

### Nonlinear Process (Model)

- Process dynamics: A becomes a(x)
- Measurement: *H* becomes h(x)

#### **Filter Reformulation**

- Use functions instead of matrices
- Use Jacobians to project forward, and to relate measurement to state



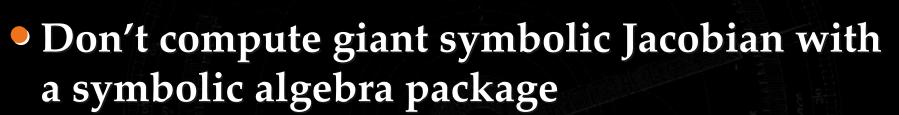
## Jacobian?



- If measurement is a vector of length M
- And state has length N
- Jacobian of measurement function will be MxN matrix of numbers (not equations)
- Often evaluating h(x) and Jacobian(h(x)) at the same time cost only a little extra



# Tips



- Do use an automatic method during development
- Check out tools from optimization packages
  Differentiating your function line-by-line is usually pretty easy



## **New Approaches**



#### Several extensions are available that work better than the EKF in some circumstances



## **System Identification**

## Model Form and Parameters (Greg Welch)



## Measurement Noise (R)





6

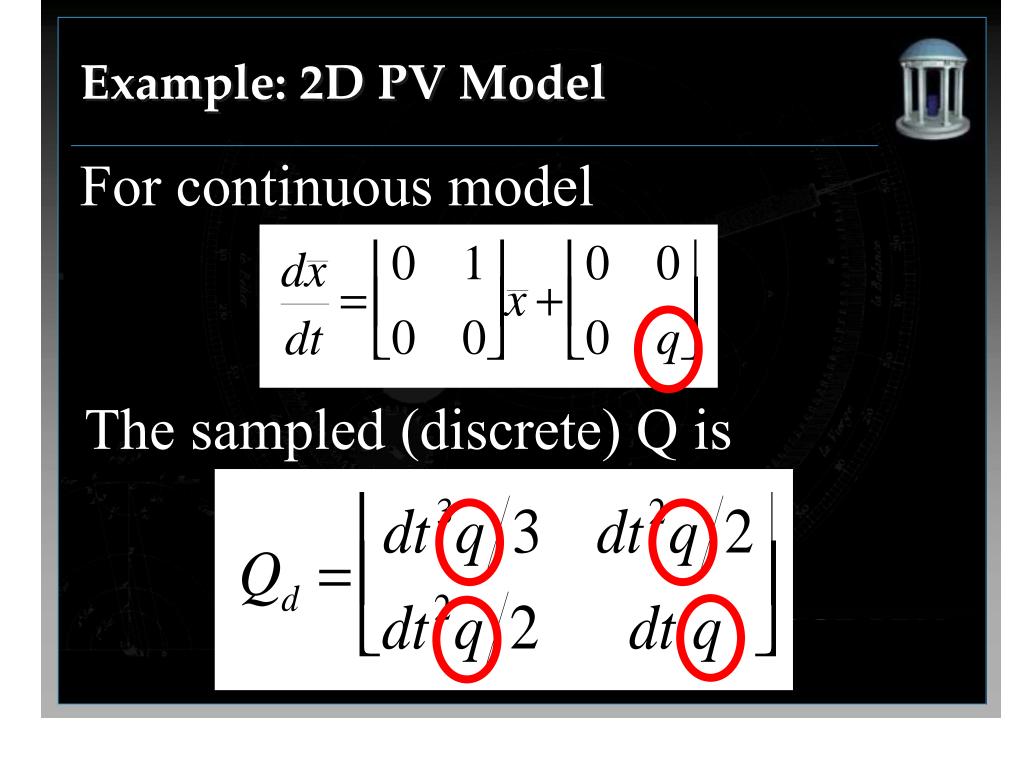
## Sampled Process Noise (Q)

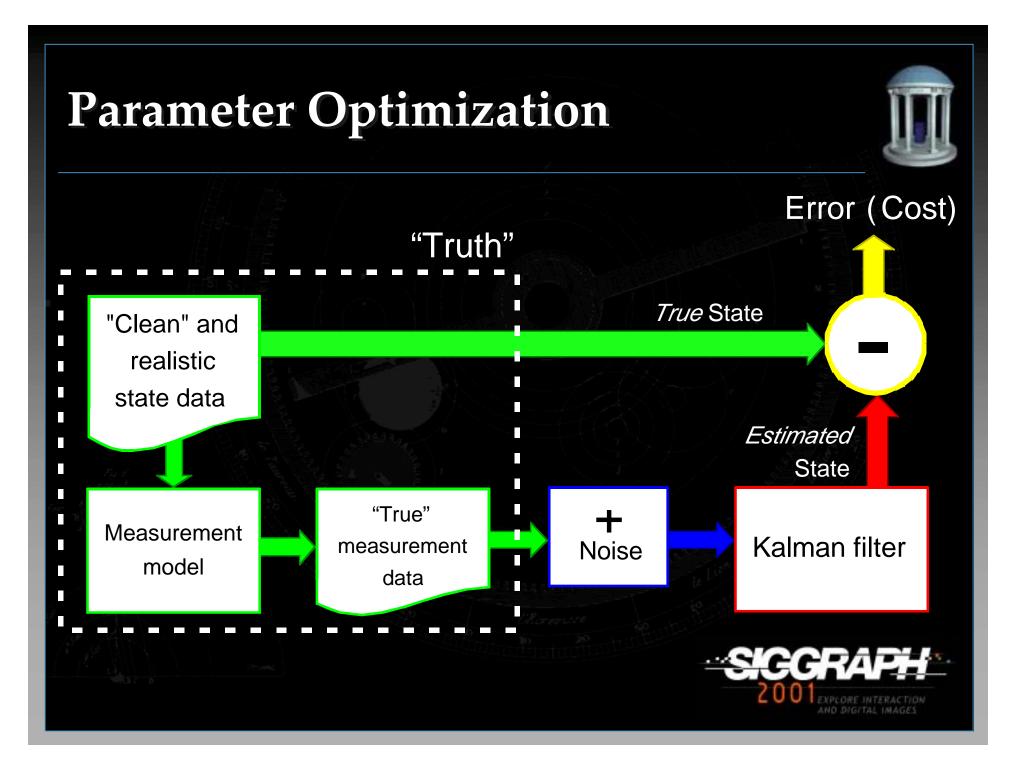
# For continuous model

$$\frac{d\overline{x}}{dt} = F\overline{x} + Q_c$$

# The sampled (discrete) Q is

$$Q_d = \int_0^{d*} e^{F\tau} Q_c e^{F^T\tau} d\tau$$





## **Multiple-Model Configurations**

#### **Off or On-Line Model Selection**



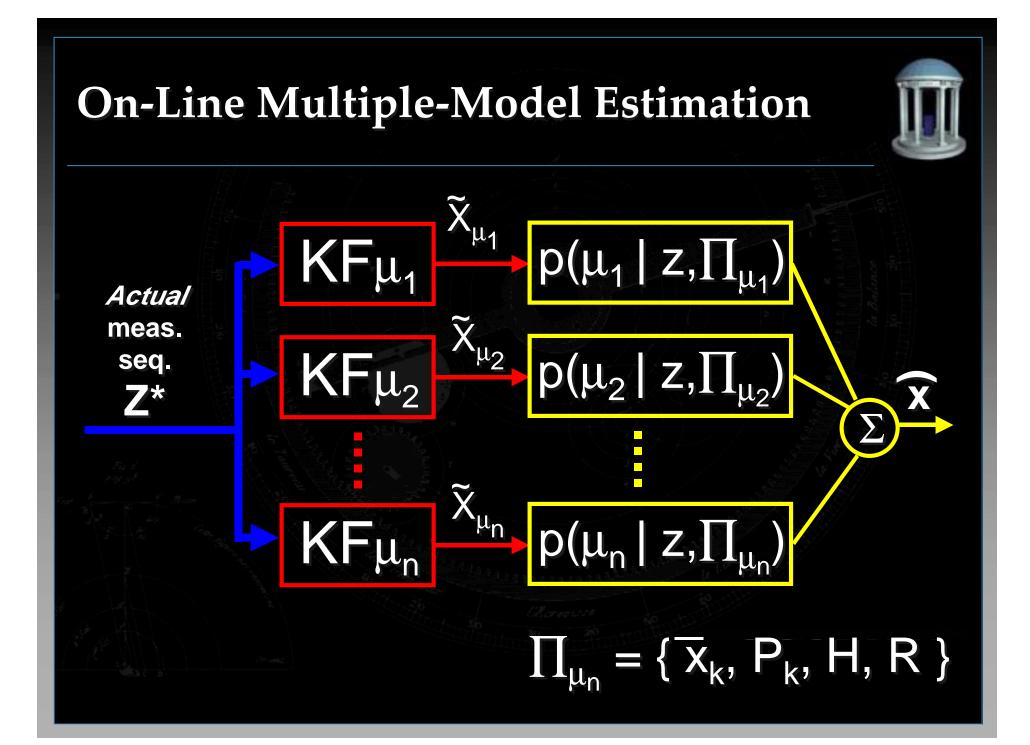
## **Off-Line Model Selection**

simulated measurement sequence  $Z_1, Z_2, \dots, Z_k$  Optimizer 1

Optimizer 2

Optimizer n





## **Probability of Model μ**

# For model $\mu$ with $\Pi_{\mu} = \{x, P, H, R\}$

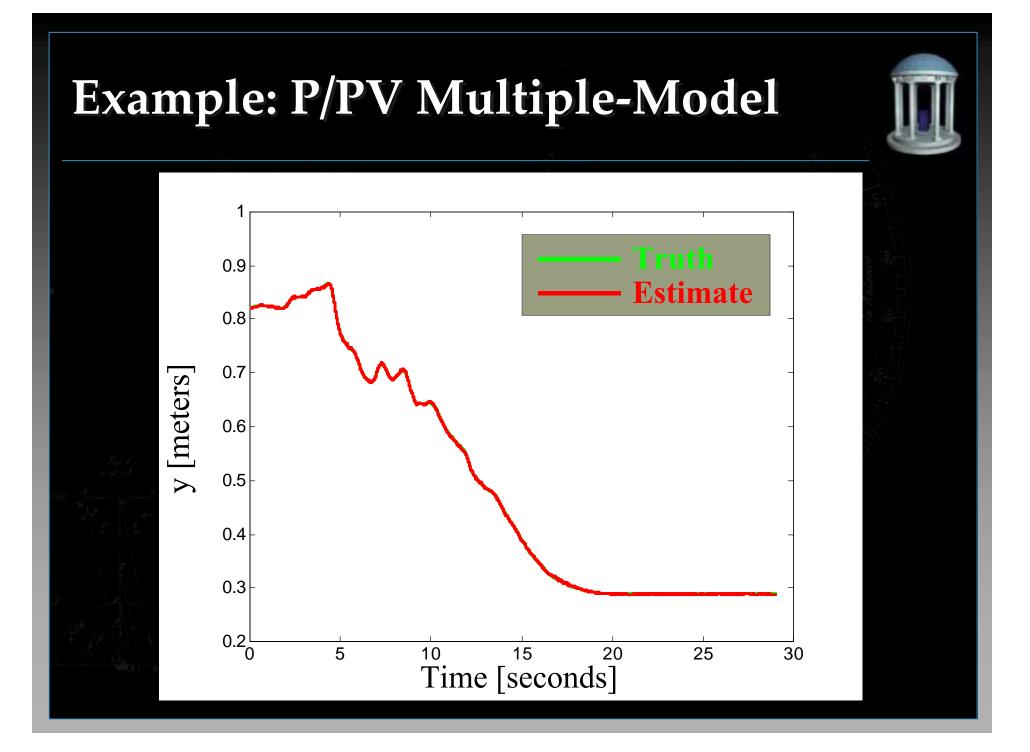
 $p(\mu|z,\Pi_{\mu}) = \frac{1}{(2\pi|C|)^{\frac{n}{2}}} e^{-\frac{1}{2}(z-Hx)^{T}C^{-1}(z-Hx)}$ 

# where $C = HPH^T + R$

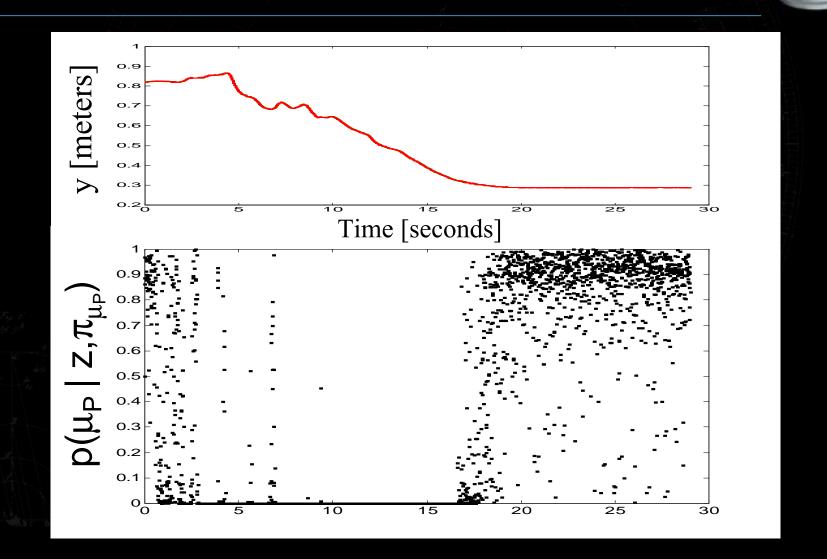
## **Final Combined Estimate**

 $\widehat{x} = \sum_{\mu} \mathscr{F}_{\mu} \frac{p(\mu | z, \Pi_{\mu})}{\sum p(\nu | z, \Pi_{\nu})}$ ν



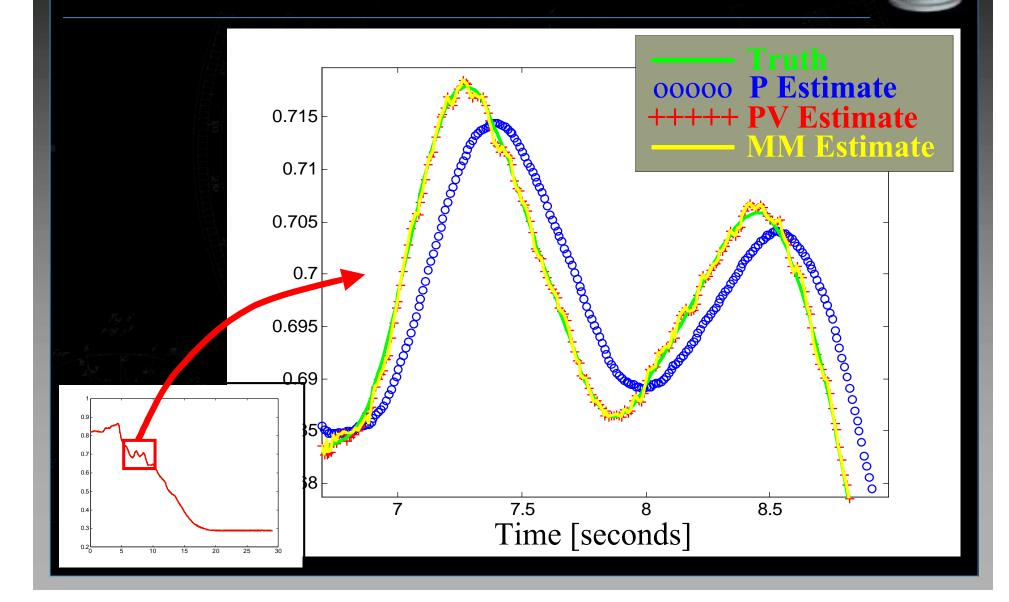


## **MME Weighting**

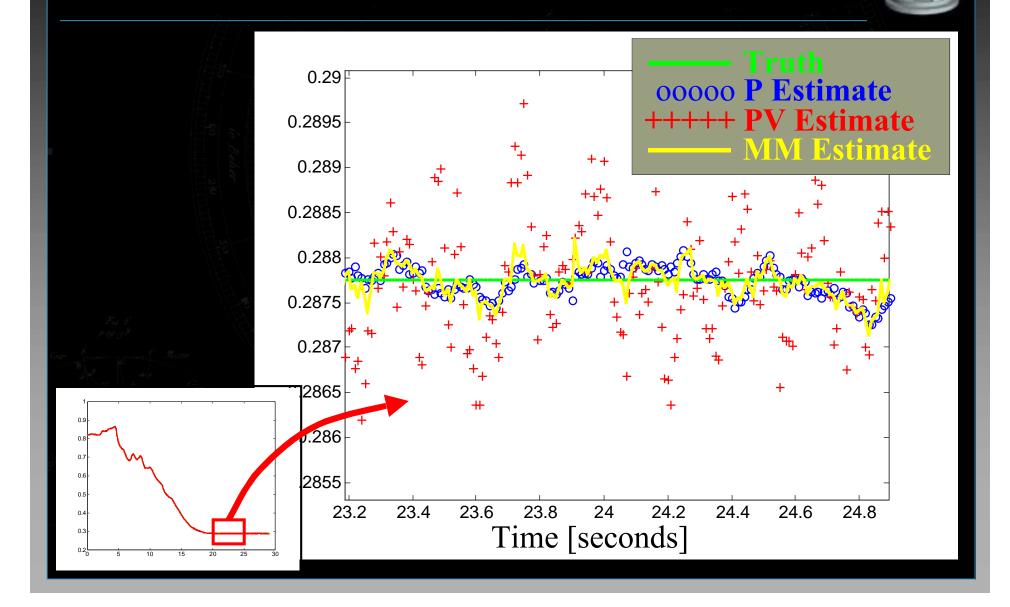


ب این چیدم - این چیدم

## **Low-Latency During Motion**



## **Smooth When Still**



## Conclusions

## Suggestions and Resources (Greg Welch)



## Many Applications (Examples)

- Engineering
  - Robotics, spacecraft, aircraft, automobiles
- Computer
  - Tracking, real-time graphics, computer vision
- Economics
  - Forecasting economic indicators
- Other
  - Telephone and electricity loads



## Kalman Filter Web Site

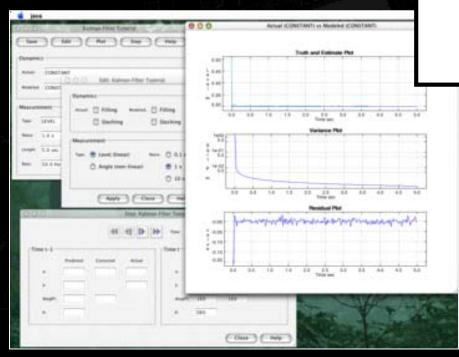
#### http://www.cs.unc.edu/~welch/kalman/

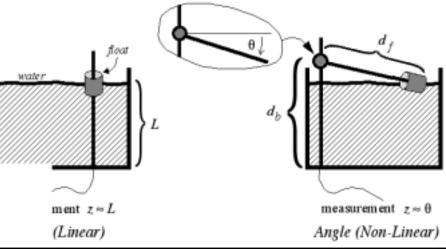
- Electronic and printed references
  - Book lists and recommendations
  - Research papers
  - Links to other sites
  - Some software
- News



## Java-Based KF Learning Tool

- On-line 1D simulation
- Linear and non-linear
- Variable dynamics





http://www.cs.unc.edu/~welch/kalman/



## KF Course Web Page

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

(<u>http://www.cs.unc.edu/~tracker/</u>)

- Electronic version of course pack (updated)
- Java-Based KF Learning Tool
- KF web page

• See also notes for Course 11 (Tracking)



## **Closing Remarks**

Try it! Not too hard to understand or program Start simple Experiment in 1D Make your own filter in Matlab, etc. • Note: the Kalman filter "wants to work" Debugging can be difficult Errors can go un-noticed



