Course 8

An Introduction to the Kalman Filter

Speakers

Greg Welch
Gary Bishop

Kalman Filters in 2 hours?

- Hah!
- No magic.
- Pretty simple to apply.
- Tolerant of abuse.
- Notes are a standalone reference.
- These slides are online at http://www.cs.unc.edu/~tracker/ref/s2001/kalman/

Rudolf Emil Kalman

- Born 1930 in Hungary
- BS and MS from MIT
- PhD 1957 from Columbia
- Filter developed in 1960-61
- Now retired

What is a Kalman Filter?

- Just some applied math.
- A linear system: $\mathrm{f}(\mathrm{a}+\mathrm{b})=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})$.
- Noisy data in \rightarrow hopefully less noisy out.
- But delay is the price for filtering...
- Pure KF does not even adapt to the data.

What is it used for?

- Tracking missiles
- Tracking heads/hands/drumsticks
- Extracting lip motion from video
- Fitting Bezier patches to point data
- Lots of computer vision applications
- Economics
- Navigation

A really simple example

sccenar

Gary makes a measurement

$$
\begin{aligned}
& z_{1}, \sigma_{z_{1}}^{2} \\
& \hat{x}_{1}=z_{1} \\
& \hat{\sigma}_{1}^{2}=\sigma_{z_{1}}^{2} \\
& \text { Conditional Density Function }
\end{aligned}
$$

Greg makes a measurement

$$
\begin{aligned}
& z_{2}, \sigma_{z_{2}}^{2} \\
& \hat{x}_{2}=\ldots ? \\
& \hat{\boldsymbol{O}}_{2}^{2}=\ldots ?
\end{aligned}
$$

Combine estimates

$$
\begin{gathered}
\hat{x}_{2}=\hat{x}_{1}+K_{2}\left(z_{2}-\hat{x}_{1}\right) \\
K_{2}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{z_{2}}^{2}}
\end{gathered}
$$

Combine variances

$$
\frac{1}{\sigma_{2}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{z_{2}}^{2}}
$$

sccrart

Combined Estimates

$$
\begin{aligned}
& \text { Conditional Density Function } \\
& \hat{x}=\hat{x}_{2}
\end{aligned}
$$

Online weighted average!

But suppose we're moving

- Not all the difference is error
- Some may be motion
- KF can include a motion model
- Estimate velocity and position

Process Model

- Describes how the state changes over time - The state for the first example was scalar
- The process model was "nothing changes"

A better model might be

- State is a 2 -vector [position, velocity]
${ }^{\bullet}$ position $_{\mathrm{n}+1}=$ position $_{\mathrm{n}}+$ velocity $_{\mathrm{n}}{ }^{*}$ time
\bullet^{-}velocity $_{\mathrm{n}+1}=$ velocity $_{\mathrm{n}}$

Measurement Model

"What you see from where you are" not
"Where you are from what you see"

Predict \rightarrow Correct

KF operates by

- Predicting the new state and its uncertainty
- Correcting with the new measurement
predict correct

Example: 2D Position-Only

(Greg Welch)

Apparatus: 2D Tablet

Process Model

$$
\left\lfloor\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right\rfloor=\left\lfloor\begin{array}{cc|c}
1 & 0 & x_{k-1} \\
0 & 1 & y_{k-1}
\end{array}\right\rfloor+\left\lfloor\begin{array}{l}
\sim x_{k-1} \\
\sim y_{k-1}
\end{array}\right\rfloor
$$

$$
\bar{x}_{k}=A \bar{x}_{k-1}+\bar{w}_{k-1}
$$

Measurement Model

$$
\left[\begin{array}{l}
u_{k} \\
v_{k}
\end{array}\right]=\left[\begin{array}{cc}
H_{x} & 0 \\
0 & H_{y}
\end{array}\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]+\left[\begin{array}{l}
\sim u_{k} \\
\sim v_{k}
\end{array}\right]\right.
$$

meas.⿹\zh4灬
measurqment mlitix
stare ${ }_{k}$
$n \overline{\phi s s} \underset{k}{e}$

$$
z_{k}=H x_{k}+v_{k}
$$

Preparation

$A=\left\lfloor\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right\rfloor$
 State Transition

$$
Q=E\left\{w * w^{T}\right\}=\left[\begin{array}{cc}
Q_{x x} & 0 \\
0 & Q_{y y}
\end{array}\right\rfloor
$$

Process
Noise
Covariance

$$
R=E\left\{\bar{v} * \bar{v}^{T}\right\}=\left[\begin{array}{cc}
R_{x x} & 0 \\
0 & R_{y y}
\end{array}\right]
$$

Measurement
Noise
Covariance

Initialization

$$
\begin{aligned}
& \bar{x}_{0}=H \bar{z}_{0} \\
& P_{0}=\left\lfloor\begin{array}{ll}
\varepsilon & 0 \\
0 & \varepsilon
\end{array}\right\rfloor
\end{aligned}
$$

PREDICT

$$
\begin{aligned}
& \bar{x}_{k}^{-}=A \bar{x}_{k-1} \\
& P_{k}^{-} \neq A P_{k-1} A^{T}+Q
\end{aligned}
$$

transition
uncertainty
ECGCRAFH

CORRECT

$$
\begin{aligned}
& \bar{x}_{k}=\bar{x}_{k}^{-}+(K)\left(\bar{z}_{k}-H \bar{x}_{k}^{-}\right) \\
& P_{k}=(I \text { - (4-k) }+ \text { recticted })
\end{aligned}
$$

$$
K=P_{k}^{-} H^{T}\left(\underline{H P_{k}^{-}} H^{T}+R\right)^{-1}
$$

"denominator"

(measurement space)

Summary

$$
\begin{aligned}
\bar{x}_{k}^{-} & =A \bar{x}_{k-1} \\
P_{k}^{-} & =A P_{k-1} A^{T}+Q
\end{aligned}
$$

$$
\begin{aligned}
& K=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1} \\
& x_{k}=\bar{x}_{k}^{-}+K\left(z_{k}-H x_{k}^{-}\right) \\
& P_{k}=(I-K H) P_{k}^{-}
\end{aligned}
$$

Results: XY Track

Y Track: Moving then Still

Motion-Dependent Performance

significant
latency when moving...
...relatively

Example: 2D Position-Velocity

(PV Model)

GCCRAFM,
2001 man

Process Model (PV)

Measurement Model (Same)

measurement matrix
state

$\left\lfloor\begin{array}{cccc}H_{x} & 0 & 0 & 0 \\ 0 & H_{y} & 0 & 0\end{array}\right\rfloor$

$\left\lfloor\begin{array}{c}x \\ y \\ d x / d t \\ d y / d t\end{array}\right\rfloor$

Different Performance

improved latency when moving...

Example: 6D HiBall Tracker

(x, y, z, roll, pitch, yaw)

Apparatus

HiBall with six optical sensors

Ceiling panel with LEDs

sccraph

State Vector (PV)

$$
\bar{X}=\left[\begin{array}{lllll}
\tau & \rho & d \tau / d t & d \rho / d t & \lambda
\end{array}\right]^{T}
$$

$\tau=$ translation (3D)
$\rho=$ rotation (3D)
$d \tau / d t=$ linear velocity (3D)
$d \rho / d t=$ angular velocity (3D) $\bar{\lambda}=$ LED position (3D)

Non-Linear Measurement Model

$$
\left\lfloor\begin{array}{l}
c_{x} \\
c_{y} \\
c_{z}
\end{array}\right]=V \cdot \operatorname{rotate}(\rho) \cdot(\bar{\lambda}-\tau)
$$

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left\lfloor\begin{array}{l}
c_{x} / c_{z} \\
c_{y} / c_{z}
\end{array}\right\rfloor
$$

SCAAT vs. MCAAT

- Single or Multiple Constraint(s) at a Time
- Dimension of the measurement
- Nothing about KF mathematics restricts it
- Can process in "batch" or sequential mode
- SCAAT
- Estimate 15 parameters with 2D measurements
- Temporal improvements
- Autocalibration of LED positions

HiBall Initialization

- Initialize pose using a brute-force (relatively slow) MCAAT approach
- Initial velocities = 0
- Initial process covariance $P_{0}=\sim \mathrm{cm} /$ degrees
- Transition to SCAAT Kalman filter

Nonlinear Systems

(Gary Bishop)

Kalman Filter assumes linearity

- Only matrix operations allowed
- Measurement is a linear function of state
- Next state is linear function of previous state
- Can't estimate gain
- Can't handle rotations (angles in state)
- Can't handle projection

Extended Kalman Filter

Nonlinear Process (Model)

- Process dynamics: A becomes $a(x)$
- Measurement: H becomes $h(x)$

Filter Reformulation

- Use functions instead of matrices
- Use Jacobians to project forward, and to relate measurement to state

Jacobian?

- Partial derivative of measurement with respect to state
- If measurement is a vector of length M
- And state has length \mathbf{N}
- Jacobian of measurement function will be MxN matrix of numbers (not equations)
- Often evaluating $h(x)$ and Jacobian(h(x)) at the same time cost only a little extra

Tips

- Don't compute giant symbolic Jacobian with a symbolic algebra package
- Do use an automatic method during development
- Check out tools from optimization packages
- Differentiating your function line-by-line is usually pretty easy

New Approaches

Several extensions are available that work better than the EKF in some circumstances

System Identification

Model Form and Parameters (Greg Welch)

Measurement Noise (R)

Sampled Process Noise (Q)

For continuous model

$$
\frac{d x}{d t}=F \bar{x}+Q_{c}
$$

The sampled (discrete) Q is

$$
Q_{d}=\int_{0}^{d} e^{F \tau} Q_{c} e^{F^{T} \tau} d \tau
$$

Example: 2D PV Model

For continuous model

$$
\frac{d \bar{x}}{d t}=\left\lfloor\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right\rfloor \bar{x}+\left\lfloor\begin{array}{ll}
0 & 0 \\
0 & q
\end{array}\right)
$$

The sampled (discrete) Q is

$$
Q_{d}=\left\lfloor\begin{array}{lc}
d t(q) 3 & \left.d t^{\prime}(q)\right)^{2} \\
d t^{(q)} 2 & d t(q)
\end{array}\right\rfloor
$$

Parameter Optimization

Multiple-Model Configurations

Off or On-Line Model Selection

ECGRAFH

Off-Line Model Selection

simulated measurement sequence

$$
Z_{1}, Z_{2}, \ldots, Z_{k}
$$

Optimizer 1

Optimizer 2

ㅌ
豆
ㄹ

Optimizer n

On-Line Multiple-Model Estimation

Actual meas.
seq.
Z^{*}

Probability of Model μ

For model μ with $\Pi_{\mu}=\{x, P, H, R\}$
$p\left(\mu z, \Pi_{\mu}\right)=\frac{1}{(2 \pi C)^{\frac{n}{2}}} e^{-\frac{1}{2}(z-H x)^{T} C^{-1}(z-H x)}$
where

$$
C=H P H^{T}+R
$$

Final Combined Estimate

$$
\widehat{x}=\sum_{\mu} \mathfrak{f}_{\mu} \frac{p\left(\mu \mid z, \Pi_{\mu}\right)}{\sum_{v} p\left(v \mid z, \Pi_{v}\right)}
$$

Example: P/PV Multiple-Model

MME Weighting

Low-Latency During Motion

Smooth When Still

Conclusions

Suggestions and Resources
 (Greg Welch)

Many Applications (Examples)

- Engineering
- Robotics, spacecraft, aircraft, automobiles
- Computer
- Tracking, real-time graphics, computer vision
- Economics
- Forecasting economic indicators
- Other
- Telephone and electricity loads

Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman/

- Electronic and printed references
- Book lists and recommendations
- Research papers
- Links to other sites
- Some software
- News

Java-Based KF Learning Tool

- On-line 1D simulation
- Linear and non-linear
- Variable dynamics

http://www.cs.unc.edu/~welch/kalman/

KF Course Web Page

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

(http://www.cs.unc.edu/~tracker/)

- Electronic version of course pack (updated)
- Java-Based KF Learning Tool
- KF web page
- See also notes for Course 11 (Tracking)

Closing Remarks

- Try it!
- Not too hard to understand or program
- Start simple
- Experiment in 1D
- Make your own filter in Matlab, etc.
- Note: the Kalman filter "wants to work"
- Debugging can be difficult
- Errors can go un-noticed

End

