Course 8

An Introduction to the Kalman Filter

Kalman Filters in 2 hours?

- Hah!
- No magic.
- Pretty simple to apply.
- Tolerant of abuse.
- Notes are a standalone reference.
- These slides are online at http://www.cs.unc.edu/~tracker/ref/s2001/kalman/

Rudolf Emil Kalman

Born 1930 in Hungary
BS and MS from MIT
PhD 1957 from Columbia
Filter developed in 1960-61
Now retired

What is a Kalman Filter?

- Just some applied math.
- A linear system: f(a+b) = f(a) + f(b).
- Noisy data in \rightarrow hopefully less noisy out.
- But delay is the price for filtering...
- Pure KF does not even adapt to the data.

What is it used for?

- Tracking missiles
- Tracking heads/hands/drumsticks
- Extracting lip motion from video
- Fitting Bezier patches to point data
- Lots of computer vision applications
- Economics
- Navigation

A really simple example

Gary makes a measurement

Greg makes a measurement

Combine variances

Combined Estimates

Online weighted average!

But suppose we're moving

-2

 $\mathbf{0}$

Process Model

- Describes how the state changes over time
- The *state* for the first example was scalar
- The *process model* was "nothing changes"
- A better model might be
- State is a 2-vector [position, velocity]
- $position_{n+1} = position_n + velocity_n * time$
- velocity_{n+1} = velocity_n

Measurement Model

"What you see from where you are" not "Where you are from what you see"

Predict → **Correct**

KF operates by

• Predicting the new state and its uncertainty

Correcting with the new measurement

predict correct

Example: 2D Position-Only

(Greg Welch)

Process Model $\begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_{k-1} \\ 0 & 1 & y_{k-1} \end{bmatrix} + \begin{bmatrix} \sim x_{k-1} \\ \sim y_{k-1} \end{bmatrix}$ state transition $\overline{\mathbf{X}}_{qte_1}$ state W ise $\overline{x}_{k} = A\overline{x}_{k-1} + \overline{w}_{k-1}$

Measurement Model $\begin{bmatrix} H_{x} & 0 & x_{k} \\ 0 & H_{v} & y_{k} \end{bmatrix} + \begin{bmatrix} \sim u_{k} \\ \sim v_{k} \end{bmatrix}$ $\left| \mathcal{U}_{k} \right| =$ measurement mut ix n**o**jse $mea \overline{\mathfrak{R}} rement$ staxe, $\overline{Z}_k = H \overline{X}_k + \overline{V}_k$

Initialization

- दीहर व इन्द्रहर, हर्ज -

 $\overline{x}_0 = H\overline{z}_0$ $|\varepsilon|$ P_0 ${\cal E}$

Results: XY Track

Motion-Dependent Performance

Example: 2D Position-Velocity

(PV Model)

Process Model (PV)

Different Performance

Example: 6D HiBall Tracker

(x, y, z, roll, pitch, yaw)

HiBall with six optical sensors

Ceiling panel with LEDs

SCAAT vs. MCAAT

- Single or Multiple Constraint(s) at a Time
- Dimension of the measurement
 - Nothing about KF mathematics restricts it
 - Can process in "batch" or sequential mode
- SCAAT
 - Estimate 15 parameters with 2D measurements
 - Temporal improvements
 - Autocalibration of LED positions

HiBall Initialization

- Initialize pose using a brute-force (relatively slow) MCAAT approach
- Initial velocities = 0
- Initial process covariance P₀ = ~cm/degrees
 Transition to SCAAT Kalman filter

Nonlinear Systems

(Gary Bishop)

Kalman Filter assumes linearity

- Only matrix operations allowed
- Measurement is a linear function of state
- Next state is linear function of previous state
- Can't estimate gain
- Can't handle rotations (angles in state)
- Can't handle projection

Extended Kalman Filter

Nonlinear Process (Model)

- Process dynamics: A becomes a(x)
- Measurement: *H* becomes h(x)

Filter Reformulation

- Use functions instead of matrices
- Use Jacobians to project forward, and to relate measurement to state

Jacobian?

- If measurement is a vector of length M
- And state has length N
- Jacobian of measurement function will be MxN matrix of numbers (not equations)
- Often evaluating h(x) and Jacobian(h(x)) at the same time cost only a little extra

Tips

- Do use an automatic method during development
- Check out tools from optimization packages
 Differentiating your function line-by-line is usually pretty easy

New Approaches

Several extensions are available that work better than the EKF in some circumstances

System Identification

Model Form and Parameters (Greg Welch)

Measurement Noise (R)

6

Sampled Process Noise (Q)

For continuous model

$$\frac{d\overline{x}}{dt} = F\overline{x} + Q_c$$

The sampled (discrete) Q is

$$Q_d = \int_0^{d*} e^{F\tau} Q_c e^{F^T\tau} d\tau$$

Multiple-Model Configurations

Off or On-Line Model Selection

Off-Line Model Selection

simulated measurement sequence Z_1, Z_2, \dots, Z_k Optimizer 1

Optimizer 2

Optimizer n

Probability of Model μ

For model μ with $\Pi_{\mu} = \{x, P, H, R\}$

 $p(\mu|z,\Pi_{\mu}) = \frac{1}{(2\pi|C|)^{\frac{n}{2}}} e^{-\frac{1}{2}(z-Hx)^{T}C^{-1}(z-Hx)}$

where $C = HPH^T + R$

Final Combined Estimate

 $\widehat{x} = \sum_{\mu} \mathscr{F}_{\mu} \frac{p(\mu | z, \Pi_{\mu})}{\sum p(\nu | z, \Pi_{\nu})}$ ν

MME Weighting

ب این چیدم - این چیدم

Low-Latency During Motion

Smooth When Still

Conclusions

Suggestions and Resources (Greg Welch)

Many Applications (Examples)

- Engineering
 - Robotics, spacecraft, aircraft, automobiles
- Computer
 - Tracking, real-time graphics, computer vision
- Economics
 - Forecasting economic indicators
- Other
 - Telephone and electricity loads

Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman/

- Electronic and printed references
 - Book lists and recommendations
 - Research papers
 - Links to other sites
 - Some software
- News

Java-Based KF Learning Tool

- On-line 1D simulation
- Linear and non-linear
- Variable dynamics

http://www.cs.unc.edu/~welch/kalman/

KF Course Web Page

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

(<u>http://www.cs.unc.edu/~tracker/</u>)

- Electronic version of course pack (updated)
- Java-Based KF Learning Tool
- KF web page

• See also notes for Course 11 (Tracking)

Closing Remarks

Try it! Not too hard to understand or program Start simple Experiment in 1D Make your own filter in Matlab, etc. • Note: the Kalman filter "wants to work" Debugging can be difficult Errors can go un-noticed

